

EMC TEST REPORT

For

Novo Digital Kft.

LED Power Supply

Test Model: SCH-300-24

Additional Models : please refer to Model list

Prepared for Address	 Novo Digital Kft. Egressy út 113/JK A. ép. 4. em. 6.1141 Budapest, Hungary
Prepared by Address	 Shenzhen Southern LCS Compliance Testing Laboratory Ltd. 101-201, No.39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China (±86)755, 20871520
Tel	: (+86)755-29871520
Fax	: (+86)755-29871521
Web	: www.LCS-cert.com
Mail	: webmaster@LCS-cert.com
Date of receipt of test sample	: May 10, 2023
Number of tested samples	:1
Serial number	: Prototype
Date of Test	: May 10, 2023 - May 16, 2023
Date of Report	: September 12, 2023

Shenzhen Southern LCS Compliance Testing Laboratory Ltd. 101-201,No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com.

Scan code to check authenticity.

	-	
	EMC TEST REPORT	
	EN IEC 55015:2019+A11:2020	
Emissio	n - Electrical lighting and similar	equipment
	EN 61547:2009	
	eral lighting purposes - EMC im	munity requirements
Report Reference No::		
Date of Issue:		
	Shenzhen Southern LCS Comp	liance Testing Laboratory Ltd.
Address:	101-201, No.39 Building,Xialang Community, Matian Street,Guang	Industrial Zone, Heshuikou ming District, Shenzhen, China.
Testing Procedure::	Full application of Harmonised sta Partial application of Harmonised Other standard testing method	andards 🛛 standards 🗍
Applicant's Name:		
Address:	Egressy út 113/JK A. ép. 4. em. 6	.1141 Budapest, Hungary
Test Specification:		and pool, nangary .
Standard:	EN IEC 55015:2019+A11:2020 EN IEC 61000-3-2:2019+A1:2021 EN 61000-3-3:2013+A1:2019+A2: EN 61547:2009	2021
Test Report Form No	SLCSEMC-2.3	
TRF Originator:	Shenzhen Southern LCS Complian	nce Testing Laboratory I to
Master TRF:	Dated 2016-08	
Shenzhen Southern LCS Complia and source of the material. Shenz	liance Testing Laboratory Ltd. A ed in whole or in part for non-comm ance Testing Laboratory Ltd. is ack then Southern LCS Compliance Te me liability for damages resulting for placement and context.	nercial purposes as long as the nowledged as copyright owner sting Laboratory Ltd. takes pa
Equipment Under Test:		
	Scharfer	
Test Model/Type:	SCH-300-24	
Rating:	See Model list	
	PASS	
Compiled by:	Supervised by:	Approved by:
Ella Huang	Any Lin	- Domegu ?
Ella Huang / Engineer	Amy Liu / Technique Director	Dm Gu / Manager

^{101-201,}No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com. Scan code to check authenticity.

EMC - TEST REPORT

Test Report No..... LCSB050523038E001

Applicant Address Telephone Fax	Egressy út 113/JK A. ép. 4. em. 6.1141 Budapest, Hungary

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

ENVIRONMENTAL CONDITIONS

The climatic conditions during the test are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. the climatic conditions during the test were in the following Limits:

Ambient temperature	15°C - 30°C	
Relative Humidity air	30% - 60%	
Atmospheric pressure	86 kPa - 106 kPa	

Climate values will be recorded and recorded separately if specifically required in the base standard or application product/product series standard.

POSSIBLE TEST CASE VERDICTS

Test cases does not apply to test object	N/A
Test object does meet requirement	P(Pass) / PASS
Test object does not meet requirement	F(Fail) / FAIL
Not measured	N/M

DEFINITION OF SYMBOLS USED IN THIS TEST REPORT

Indicate that the conditions, standards or equipment listed is applicable to this report / test / EUT.
 Indicate that the conditions, standards or equipment listed is not applicable to this report / test / EUT.

REVISION HISTORY

Revision Content	Revised by
Initial Issue	-
Revised Issue	

Remark:

001: Declared by applicant, require to re-sign the test report, "Date of issue" is replaced from "May 16, 2023" by "September 12, 2023", other information and results contained in this report are not changed, original test report become invalid.

TABLE OF CONTENTS

1. GENERAL INFORMATION	5
1.1. General Description of The Item(s)	5
1.2. Operating Mode(s) Used of Tests	,
1.3. Support / Auxiliary Equipment for The EUT	,
1.4. Description of Test Facility7	1
2. STATEMENT OF THE MEASUREMENT UNCERTAINTY	
3. MEASURING DEVICES AND TEST EQUIPMENT	
4. VERDICT SUMMARY SECTION	
4.1. Standard(s)	
4.2. Overview of Results	
5. EMISSION TESTS	
5.1. Conducted Disturbance	
5.2. Radiated Disturbance (9KHz - 30MHz)	
5.3. Radiated Disturbance (30MHz - 1GHz)16	
5.4. Harmonic Current	
5.5. Voltage Fluctuations & Flicker	
6. IMMUNITY TESTS19	
6.1. Performance Criteria	
6.2. Electrostatic Discharge	
6.3. Radio-Frequency Electromagnetic Fields	
6.4. Electrical Fast Transient / Burst	
6.5. Injected Currents (Radio-Frequency Common Mode)	
6.6. Surge	
6.7. Voltage Dips and Short Interruptions25	
ANNEX A - TEST RESULTS	
ANNEX B - TEST PHOTOS	
ANNEX C - EXTERNAL AND INTERNAL PHOTOS OF THE EUT	

1. GENERAL INFORMATION

1.1. GENERAL DESCRIPTION OF THE ITEM(S)

Equipment Under Test	LED Power Supply
Test Model/Type	SCH-300-24
Additional Models/Type	See Model list
Description of Model difference	See Model list
Rating	See Model list
Non-restricted ELV lamps	☐ Yes
	🖾 No

Model List:

Declared by applicant as follows:

- All models of drives use the same circuit and PCB layout.

- All models have similar appearance and structure except power.

- This report after information review and verification, the model "SCH-300-24" were chosen as the representative model to perform all the tests.

Model	Input Voltage (AC,V)	Output:voltage (DC, V)	Output Ampere (A)	Output Wattage (W)
SCH-18-12	100-250V	12V	1.5A	18W
SCH-20-12	185-250V	12V	1.67A	20W
SCH-30-12	185-250V	12V	2.5A	30W
SCH-45-12	185-250V	12V	3.75A	45W
SCH-60-12	185-250V	12V	5A	60W
SCH-100-12	170-250V	12V	8.33A	100W
SCH-150-12	200-250V	12V	12.5A	150W
SCH-200-12	190-250V	12V	16.7A	200W
SCH-300-12	190-250V	12V	25A	300W
SCH-18-24	100-250V	24V	0.75A	18W
SCH-20-24	185-250V	24V	0.83A	20W
SCH-30-24	185-250V	24V	1.25A	30W
SCH-45-24	200-250V	24V	1.875A	45W
SCH-60-24	200-250V	24V	2.5A	60W
SCH-100-24	170-250V	24V	4.17A	100W
SCH-150-24	200-250V	24V	6.25A	150W
SCH-200-24	190-250V	24V	8.33A	200W
SCH-300-24	190-250V	24V	12.5A	300W

1.2. OPERATING MODE(S) USED OF TESTS

During the tests, the following operating mode(s) has(have) been used.

Operating Mode	Operating Mode description	Used for testing		
operating mode		Emission	Immunity	
1	Lighting on mode			
2	Maximum light			
3	Minimum light			
4	Full load			

1.3. SUPPORT / AUXILIARY EQUIPMENT FOR THE EUT

EUT has been tested using the following auxiliary equipment :

1.4. DESCRIPTION OF TEST FACILITY

Test Location 1	Shenzhen Southern LCS Compliance Testing Laboratory Ltd. 101-201, No.39 Building,Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. CNAS Registration Number is L10160.	TESTING
Test Location 2	Shenzhen LCS Compliance Testing Laboratory Ltd. 101, 201 Building A and 301 Building C, Juji Industrial Park, Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, Guangdong, China. NVLAP Accreditation Code is 600167-0. CNAS Registration Number is L4595.	APPR
Date of receipt of test item	May 10, 2023	
Date(s) of performance of test	May 10, 2023 - May 16, 2023	

Note: Radio-Frequency Electromagnetic Field (RS) Test Subcontract to Shenzhen LCS Compliance Testing Laboratory Ltd for Testing.

2. STATEMENT OF THE MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. the reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. the measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods - Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation, the manufacturer has the sole responsibility of continued compliance of the device.

Measurement	Uncertainty (U _{lab})	Uncertainty (Ucispr)	
Conducted disturbance (9kHz - 150kHz)	± 1.40 dB	± 4.0 dB	
Conducted disturbance (150kHz - 30MHz)	± 2.80 dB	± 3.6 dB	
Magnetic field disturbance (9kHz - 150kHz)			
Magnetic field disturbance (150kHz - 30MHz)	± 3.46 dB	-	
Radiated disturbance (30MHz - 200MHz)	± 4.66 dB	± 5.2 dB	
Radiated disturbance (200MHz - 1GHz)	± 4.64 dB	± 5.0 dB	

Supplementary information:

The reported expanded uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor of k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

3. MEASURING DEVICES AND TEST EQUIPMENT

CONDUCTED DISTURBANCE							
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date	
1	No. 1 shielded Room	CHENGYU	843	1	2023-04-26	2026-04-25	
2	EMI Test Receiver	R&S	ESCI	101142	2023-04-26	2024-04-25	
3	10dB Attenuator	SCHWARZBECK	VTSD9561-F	9561-F159	2023-04-26	2024-04-25	
4	Artificial Mains Network	SCHWARZBECK	NSLK8127	8127716	2023-04-26	2024-04-25	
5	Impedance Stabilization Network	SCHWARZBECK	NTFM 8158	NTFM8158#120	2023-04-26	2024-04-25	
6	Voltage Probe	SCHWARZBECK	KT 9420	9420401	2023-04-26	2024-04-25	
7	EMI Test Software	EZ	EZ_EMC	N/A	1	1	

RADIA	RADIATED DISTURBANCE (9KHz - 30MHz)								
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date			
1	No. 1 shielded Room	CHENGYU	843	1	2023-04-26	2026-04-25			
2	EMI Test Receiver	R&S	ESCI	101142	2023-04-26	2024-04-25			
3	10dB Attenuator	SCHWARZBECK	VTSD9561-F	9561-F159	2023-04-26	2024-04-25			
4	Triple-loop Antenna	EVERFINE	LLA-2	11050003	2023-04-26	2024-04-25			
5	EMI Test Software	EZ	EZ_EMC	N/A	1	1			

RADIATED DISTURBANCE (above 30MHz)								
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date		
1	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2021-05-28	2024-05-29		
2	EMI Test Receiver	R&S	ESCI3	101010	2023-04-26	2024-04-25		
3	Log-periodic Antenna	SCHWARZBECK	VULB9163	5094	2022-05-08	2025-05-07		
4	Coupling Decoupling Network	SCHWARZBECK	CDNE M2	00251	2023-04-26	2024-04-25		
5	Coupling Decoupling Network	SCHWARZBECK	CDNE M3	00248	2023-04-26	2024-04-25		
6	EMI Test Software	EZ	EZ_EMC	N/A	1	1		
7	Controller system	SKET	SKC1000	N/A	· /	- ₁		

Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Harmonic Current and Flicker Test System	HTEC	AC2000A	1	2023-04-26	2024-04-25
2	Linear variable frequency power supply	HTEC	HHF-5010	1	2023-04-26	2024-04-25

ELECTROSTATIC DISCHARGE						
ltem	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	ESD Simulator	TESEQ	NSG 437	1615	2023-03-20	2024-03-19

ELECTRICAL FAST TRANSIENT / BURST						
Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date	
		-		Testenite de la companya de la compa	Tost squipment	

Page 10 of 49

Report No.: LCSB050523038E001

1	Electrical Fast Transient Generator	HTEC	HEFT51	162201	2023-04-26	2024-04-25
2	EFT Coupling Clamp	HTEC	H3C	163701	2023-04-26	2024-04-25

SURGE						
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Surge Generator	3CTEST	SG5006G	EC5581070	2023-04-26	2024-04-25
2	Coupling / Decoupling network	3CTEST	SGN-5010G	EC5591033	2023-04-26	2024-04-25

INJECTED CURRENTS (RADIO-FREQUENCY COMMON MODE)								
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date		
1	No. 2 shielded room	CHENGYU	743	1	2023-04-26	2026-04-25		
2	Conducted Susceptibility Generator	HTEC	CDG6000	126A140012016	2023-04-26	2024-04-25		
3	CDN	HTEC	CDN-M2+M3	A22/0382/2016	2023-04-26	2024-04-25		
4	6dB attenuator	HTEC	ATT6	HA1601	2023-04-26	2024-04-25		
5	Electromagnetic clamp	LUTHI	EM101	35535	2023-04-26	2024-04-25		

POWER FREQUENCY MAGNETIC FIELD						
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Frequency Mag-Field Generator System	HTEC	HPFMF100	100-2400	2023-04-26	2024-04-25

VOL	VOLTAGEDIPS AND SHORT INTERRUPTIONS							
Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date		
1	Voltage Dips and up Generator	HTEC	HPFS161P	162202	2023-04-26	2024-04-25		

RADIO-FREQUENCY ELECTROMAGNETIC FIELDS

Item	Test equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1 ESG Vector Signal Generator		Agilent	E4438C	MY42081396	2022-06-06	2023-06-05
2 RF POWER AMPLIFIER		OPHIR	5225R	1052	2022-06-16	2023-06-15
3	RF POWER AMPLIFIER	OPHIR	5273F	1019	2022-06-16	2023-06-15
4	Stacked Broadband Log Periodic Antenna	SCHWARZBECK	STLP 9128	9128ES-145	2022-06-19	2023-06-18
5	Stacked Mikrowellen LogPer Antenna	SCHWARZBECK	STLP 9149	9149-484	2022-06-19	2023-06-18
6	Electric field probe	Narda S.TS./PMM	EP601	611WX80208	2022-06-06	2023-06-05

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

4. VERDICT SUMMARY SECTION

This chapter present an overview of the standards and results. Refer the next chapter for details of measured test results and applied test levels.

4.1. STANDARD(S)

EN IEC 55015:2019+A11:2020 - Limits and methods of measurement of radio disturbance characteristics of electrical lighting and similar equipment.

EN 61547:2009 - Equipment for general lighting purposes — EMC immunity requirements.

EN IEC 61000-3-2:2019+A1:2021 - Electromagnetic compatibility (EMC) Part 3-2: Limits for harmonic current emissions (equipment input current ≤16 A per phase).

<u>EN 61000-3-3:2013+A1:2019+A2:2021</u> - Electromagnetic compatibility (EMC)Part 3-3: Limits for voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤16 A per phase and not subject to conditional connection.

4.2. OVERVIEW OF RESULTS

EMISSION TESTS - EN IEC 55015, EN IEC 610	000-3-2, EN 61000-3-3	
Requirement - Test case	Limit	Verdict
Conducted Disturbance - electric power supply	Table 1, Table 4	PASS
Conducted Disturbance - wired network ports at other than power supply	Table 2, Table 3	N/A
Conducted Disturbance - local wired ports at other than electrical power supply interface of ELV lamp	Table 5, Table 6	N/A
Assessment of the enclosure port		
Radiated Disturbance in the frequency range 9 kHz to 30 MHz	Table 8, Table 9	PASS
Radiated Disturbance in the frequency range 30 MHz to 1 GHz	Table 10	PASS
Harmonic Current	Clause 7	PASS
Voltage Fluctuations and Flicker ²	Clause 5	N/A
IMMUNITY TESTS - EN 6154	17	
Requirement - Test case	Basic Standard(s)	Verdict
Electrostatic Discharge	IEC/EN 61000-4-2	PASS
Radio-Frequency Electromagnetic Fields	IEC/EN 61000-4-3	PASS
Electrical Fast Transient / Burst	IEC/EN 61000-4-4	PASS
Surge	IEC/EN 61000-4-5	PASS
njected Currents (Radio-Frequency Common Mode)	IEC/EN 61000-4-6	PASS
Power Frequency Magnetic Field ¹	IEC/EN 61000-4-8	N/A
/oltage Dips and Short Interruptions	IEC/EN 61000-4-11	PASS

Supplementary information:

1) Only need to be applied to equipment containing components susceptible to magnetic fields.

2) According to EN 61000-3-3:2013+A1:2019+A2:2021 Clause A.2, Incandescent lamp luminaires with ratings less than or equal to 1000W and discharge and LED lamp luminaires with ratings less than or equal to 600W, are deemed to comply with the standard and are not required to be tested.

5. EMISSION TESTS

5.1. CONDUCTED DISTURBANCE

Standard	EN IEC 55015:2019+A11:2020		
Basic Standard(s)	EN 55016-2-1		

Disturbance voltage limits at the electric power supply interface

Frequency	rai	nge [MHz]	Limit: Quasi-peak [dB(µV)]	Limit: Average[dB(µV)]	IF BW
0,009	-	0,05	110	N/A	200 Hz
0,05	-	0,15	90 - 80	N/A	200 Hz
0,15	-	0,5	66 - 56	56 - 46	9 kHz
0,5	-2	5,0	56	46	9 kHz
5,0	-	30	60	50	9 kHz

1) At the transition frequency, the lower limit applies.

2) The limit decreases linearly with the logarithm of the frequency in the ranges 50 kHz to 150 kHz and 150 kHz to 0,5 MHz.

3) If the EUT is non-restricted ELV lamps, the limits add 26dB.

Disturbance voltage limits at wired network interfaces other than power supply

Frequency range [MHz]	Limit: Quasi-peak [dB(µV)]	Limit: Average[dB(µV)]	IF BW
0,15 - 5,0	84 - 74	74 - 64	9 kHz
5,0 - 30	74	64	9 kHz
I he disturbance voltage lim	with the logarithm of the frequenc its are derived for use with an artif mmetric mode) impedance of 150	icial asymmetrical network (AAI	MHz App

Frequency range [MHz]	Limit: Quasi-peak [dB(µA)]	Limit: Average[dB(µA)]	IF BW
0,15 - 5,0	40 - 30	30 - 20	9 kHz
5,0 - 30	30	20	9 kHz

The limits decrease linearly with the logarithm of the frequency in the range 0.15MHz to 0.5 MHz.

Disturbance voltage limits at local wired ports: local wired ports other than electrical power supply interface of ELV lamp

Frequency range [MHz]	Limit: Quasi-peak [dB(µV)]	Limit: Average[dB(µV)]	IF BW
0,15 - 5,0	80	70	9 kHz
5,0 - 30	74	64	9 kHz

Test configuration

Test Procedure Description

For Table-top, EUT shall be placed at $(0,8 \pm 0,05)$ m above the reference plane of the test site selected for measurement. for Floor standing, EUT shall be placed at $(0,12 \pm 0,04)$ m above the reference plane of the test site selected for measurement.

and connected to the AC mains through artificial mains network (LISN). EUT is powered by V-type artificial power network, and the distance from LISN or ANN is 0,8m. the part of the EUT power cord exceeding 0,8m folds in parallel to form a 0,3-0,4 m eights harness.

Test Results refer to Annex A.1

^{101-201,}No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com. Scan code to check authenticity.

5.2. RADIATED DISTURBANCE (9KHz - 30MHz)

Standard	EN IEC 55015:2019+A11:2020	
Basic Standard(s)	EN 55016-2-3	
Test method	Large Loop Antenna (LLA)	

LLAS Radiated disturbance limits (2m)

Frequency	y rar	nge [MHz]	Limit: Quasi-peak [dB(µA)]	IF BW
0,009	-	0,07	88	200 Hz
0,07	-	0,15	88 - 58	200 Hz
0,15	-	3,0	58 - 22	9 kHz
3,0	-	30	22	9 kHz

Test configuration

Test Procedure Description

The EUT is placed on a wood table in the center of a loop antenna. the induced current in the loop antenna is measured by means of a current probe and the test receiver. Three field components are checked by means of a coaxial switch.

Test Results refer to Annex A.2

Shenzhen Southern LCS Compliance Testing Laboratory Ltd. 101-201,No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com. Scan code to check authenticity.

5.3. RADIATED DISTURBANCE (30MHz - 1GHz)

Standard	EN IEC 55015:2019+A11:2020	
Basic Standard(s)	EN 55016-2-3	
Test method	Semi Anechoic Chamber (SAC)	

SAC Radiated disturbance limit

Frequency range [MHz]	Limit: Quasi-p	eak [dB(µV/m)]	
riequency range [minz]		10 m distance	- IF BW
30 - 230	40	30	120 KHz
230 - 1000	47	37	120 KHz

1) At the transition frequency, the lower limit applies.

2) Distance refers to the distance in meters between the measuring instrument antenna geometric center and the closed point of any part of the EUT.

Test configuration

Test Procedure Description

The radiated disturbance test was conducted in a 3m Semi Anechoic Chamber and conforming to CISPR 16-2-3. the EUT is placed on a turntable, which is 0.8 meter high above the ground. the turntable can rotate 360 degrees to determine the position of the maximum emission level. the EUT is set 3 meters away from the receiving antenna, which is mounted on an antenna tower. the antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. Log-periodic Antenna (calibrated by Dipole antenna) is used as a receiving antenna. both horizontal and vertical polarization of the antenna is set on test.

Test Results refer to Annex A.3

5.4. HARMONIC CURRENT

Standard	EN IEC 61000-3-2:2019+A1:2021		
		Systems with nominal voltages less than 220VAc (line-to-neutral)	
Exlusions		Lighting equipment with rated power < 5 W	
(For these categories of equipment, limits are		Equipment with rated power of \leq 75 W (other than lighting equipment)	
not specified in the EN		Professional equipment with a total rated power >1kW	
IEC 61000-3-2)		Symmetrically controlled heating elements with rated power ≤ 200 W	
		Independent dimmers for incandescent lamps with rated power ≤ 1kW	

Clas	sification		
	Class A	Alle	quipment not specified as belonging to Class B, C or D
	Class B		able tools
		\boxtimes	Lighting equipment with active input power > 25W
			Lighting equipment with active input power \geq 5W and \leq 25W
	Class C		Table 3, column 2 (Power-related limits)
	1		□ 3rd harmonic \leq 86%, 5th harmonic \leq 61% and waveform conditions
		1	THD \leq 70%, Harmonic:3rd \leq 35%, 5th \leq 25%, 7th \leq 30%, 9th and 11th \leq 20%, 2nd \leq 5%
	Class D	Perso or mo	onal computers, television receivers, refrigerators and freezers having one ore variable-speed drives to control compressor

Test configuration

Test Results refer to Annex A.4

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

5.5. VOLTAGE FLUCTUATIONS & FLICKER

Standard

EN 61000-3-3:2013+A1:2019+A2:2021

Limit

Pst (Short term flicker)	≤1	Not applicable
Pit (Long-term flicker)	≤ 0,65	Not applicable
Tmax (Accumulated time)	≤ 500 ms	Not applicable
dc (Relative voltage change)	≤ 3.3%	Not applicable
d _{max} (Max.voltage change)	≤ 4%	≤ 6%
uniax (Max. voltage change)	≤ 7%	Not applicable

Test configuration

6. IMMUNITY TESTS

6.1. PERFORMANCE CRITERIA

Standard	EN 61547:2009	

The performance of lighting equipment shall be assessed by monitoring:

- the luminous intensity of the luminaire or of the lamp(s).

- the functioning of the control in the case of equipment which includes a regulating control or concerns the regulating control itself.

- the functioning of the starting device, if any.

<u>Performance criterion A:</u> during the test, no change of the luminous intensity shall be observed and the regulating control, if any, shall operate during the test as intended.

<u>Performance criterion B:</u> during the test, the luminous intensity may change to any value. after the test, the luminous intensity shall be restored to its initial value within 1 min. regulating controls need not function during the test, but after the test, the mode of the control shall be the same as before the test provided that during the test no mode changing commands were given.

<u>Performance criterion C:</u> during and after the test, any change of the luminous intensity is allowed and the lamp(s) may be extinguished. after the test, within 30 min, all functions shall return to normal, if necessary by temporary interruption of the mains supply and / or operating the regulating control.

				Test	s and p	erform	ance cri	teria	13	TEST
Electronic lighting equipment		5.2 (ESD)	5.3 (RS)	5.4 (PFMF)	5.5 (EFT)	5.6 (CS)	5.7 (Surge)	5.8 (Dips)	5.9 (Interruption)	
	Self-ballasted lamps	В	Α	В	В	Α	С	С	В	AF
	Independent auxiliaries	В	Α	В	В	А	С	с	B ¹	
\boxtimes	Luminaire including active electronic components	в	А	в	В	A	с	С	B ¹	
	Luminaire for emergency lighting		Α	В	B²	А	B²	See ³	See ³	

Supplementary information:

1) For ballasts where the lamp is not able to restart within 1 min, due to the physical constraints of the lamp, performance criterion C applies.

2) Luminaires for emergency lighting shall be tested in both the normal and emergency mode of operation.

3) These tests do not apply as they are covered by the test in IEC 60598-2-22.

4) For emergency luminaires designed to operate in high-risk task areas, after the test, the luminous intensity shall be restored to its initial value within 0,5 s.

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

6.2. ELECTROSTATIC DISCHARGE

Electrostatic discharge (ESD) is the result of accumulated static electricity from a person or object, for example, walking on a synthetic carpet. ESD can indirectly affect the operation of equipment or damage its electronic components through direct discharge or coupling. both effects were simulated during the test. contact discharge is the preferred test method. twenty discharges (10 with positive and 10 with negative polarity) shall be applied on each accessible metallic part of the enclosure (terminals are excluded). air discharges shall be used where contact discharges cannot be applied. discharges shall be applied on the horizontal or vertical coupling planes.

Requirements

Standard	EN 61547:	EN 61547:2009							
Basic standard	EN 61000-	N 61000-4-2							
Port under test	Enclosure	Enclosure							
Contact discharge	⊠ ±2 kV	\boxtimes	±4 kV		±8 kV		±15 kV		
Air discharge	🖾 ±2kV	\boxtimes	± 4 kV		±8 kV		±15 kV		
Number of discharges	≥ 10 per po	10 per polarity with ≥ 1 sec interval							

Test configuration

Test Results refer to Annex A.5

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

6.3. RADIO-FREQUENCY ELECTROMAGNETIC FIELDS

During the test it is verified if the EUT has sufficient immunity against radiated electromagnetic fields.

The test was carried out in a half-wave anechoic chamber with absorbent material attached to a reflective ground plate, Before the test, the test field strength needs to be calibrated. during the calibration, the corresponding relationship between the target field strength and the forward power applied to the transmitting antenna is established.during the test, except for EUT, the indoor layout is consistent with the calibration.

The EUT and its simulators are placed on a turn table which is 0,8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. both horizontal and vertical polarization of the antenna are set on test. each of the four sides of EUT must be faced this transmitting antenna and measured individually. in order to judge the EUT performance, a CCD camera is used to monitor EUT screen.

Requirements

Standard	EN 61547:2009			
Basic standard	EN 61000-4-3			
Port under test	Enclosure			
Frequency range	Test level	Modulation	Dwell time	Step size
80 - 1000 MHz	3 V/m	1 kHz, 80 % AM	≥ 0,5 s	≤ 1%

Test configuration

Test Results refer to Annex A.5

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

6.4. ELECTRICAL FAST TRANSIENT / BURST

The EFT immunity test simulates the disturbances by caused of very short transient bursts.

The EUT is put on the Insulating support which is 0.1 meter high above the ground reference plane. the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5 m. both polarities of the test voltage should be applied during test, fast transients are carried out with a minimum duration of 2 min with a positive polarity and a minimum of 2 min with a negative polarity.

Requirements

Stan	StandardEN 61547:20Basic standardEN 61000-4-4Pulse characteristics5/50 ns		009		
Basi	c standard	EN 61000-4	-4		
Puls	e characteristics	5/50 ns			
Port	under test		Test level	Repetition frequency	Duration
\boxtimes	Inder test AC input / output power		± 1000 V	5 kHz	2 min / polarity
	DC input / output p	oower ²	± 500 V	5 kHz	2 min / polarity
	Signal / Control po	ort ¹³	± 500 V	5 kHz	2 min / polarity

1) Only applicable to ports interfacing with cables whose whose total length may exceed 3 m.

2) Not applicable to equipment not connected to the mains while in use.

3) Change of state commands are not applied during the test.

Test configuration

Test Results refer to Annex A.5

^{101-201,}No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com. Scan code to check authenticity.

6.5. INJECTED CURRENTS (RADIO-FREQUENCY COMMON MODE)

During the test the immunity of the EUT for conducted electromagnetic fields is checked .

The equipment to be tested is placed on an insulating support of 0,1 m \pm 0,05 m height above a reference ground plane. a non conductive roller / caster in the range of 0,1 m \pm 0,05 m above the reference ground plane can be used as an alternative to an insulating support. all cables exiting the EUT shall be supported at a height of at least 30 mm above the reference ground plane. The coupling and decoupling devices shall be placed on the reference ground plane, making direct contact with it at a distance of 0,1 m to 0,3 m from the EUT.

Requirements

Star	ndard	EN 6154	7:2009			
Basic standard EN 6100		0-4-6				
Frequency range 0,15 - 8			MHz			
Port	under test		Test level	Modulation	Dwell time	Step size
\boxtimes	AC input / output	power	3 V	1 kHz, 80 % AM	≥0,5 s	≤ 1%
	DC input / output	power ¹	3 V	1 kHz, 80 % AM	≥ 0,5 s	≤ 1%
	Signal / Control p	oort ²	3 V	1 kHz, 80 % AM	≥ 0,5 s	≤ 1%

1) Not applicable to equipment not connected to the mains while in use.

2) Only applicable to ports interfacing with cables whose whose total length may exceed 3 m.

Test configuration

Test Results refer to Annex A.5

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

6.6. SURGE

The surge immunity test is simulates unidirectional surges caused by overvoltages from switching and lightning transients.

The surge is applied to the EUT power supply terminal via the capacitive coupling network, to the EUT power supply provide a 1,0 KV 1,2/50us voltage surge (at open-circuit condition), at least 5 positive and 5 negative tests with 1 min or less repetition rate are conducted during test. and phase angles is 90° and 270°.

Sta	ndard	EN 61547:2009			M. Payles
Bas	Basic standard Pulse wave-shape Repetition rate lumber of pulses Classification Luminaires and independent auxiliaries	EN 61000-4-5			
Puls	se wave-shape	1,2/50 µs			
Rep	etition rate	1 per minute or faste	r		
Nun	nber of pulses	5 pulses (at each pol	arity and phase and	iles)	
Clas	ssification	Port under test	Test Level	Coupling	Phase angle
	Luminaires and	AC input power	+ 1 kV	line - line	90°
\boxtimes	independent	AC input power	- 1 kV	line - line	270°
	C 40 40 50 60 C 20 60 6 C 40	AC input power	+ 2 kV	line - ground	90°
-	Input power >25W	Ac input power	- 2 kV	line - ground	270°
	Luminaires and		+ 0,5 kV	line - line	90°
	2111571064542W00545106440452006 (\$505085755	AC input power	- 0,5 kV	line - line	270°
	299,223 0	AC input power	+ 1 kV	line - ground	90°
	input power 52500	Ao input power	- 1 kV	line - ground	270°
			+ 0,5 kV	line - line	90°
	 A start of the second start (part the second start) 	AC input power	- 0,5 kV	line - line	270°
	Self-ballasted lamps and semi-luminaires		+ 1 kV	line - ground	90°
		AC input power	- 1 kV	line - ground	270°

Requirements

1) In addition to the specified test level, all lower test levels as detailed in EN 61000-4-5 should also be satisfied.

Test configuration

Test Results refer to Annex A.5

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

3M(

6.7. VOLTAGE DIPS AND SHORT INTERRUPTIONS

The surge immunity test is simulates Voltage dips and short interruptions occur due to faults in a (public or non-public) network or in installations by sudden changes of large loads.

The EUT shall be connected to the test generator for testing using the shortest power cable specified by the EUT manufacturer and, if no cable length is specified, the shortest cable suitable for the EUT, each representative mode of operation shall be tested. for short interruptions to use 0° for one of the phases.

Requirements

Standard	EN 61547:2009					
Basic standard	EN 61000-4-11					
# of dips / interruptions	3 dips / interruptions for each test level and phase angle					
Intervals between events	≥ 10 s		<u>, , , , , , , , , , , , , , , , , , , </u>			
Port under test	Test level 1	Number of pe	eriods (cycles)			
	T CST IEVEI	50Hz	60Hz			
AC input power	70% of UNOM	10	12			
	0% of UNOM	0,5	0,5			

1) Where the equipment has a rated voltage range the following shall apply:

- If the voltage range does not exceed 20 % of the lower voltage specified for the rated voltage range, a single voltage within that range may be specified as a basis for the test level specification.

- in all other cases, the test procedure shall be applied for both the lowest and highest voltages declared in the voltage range.

Test configuration

Test Results refer to Annex A.5

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

ANNEX A - TEST RESULTS

A.1. CONDUCTED DISTURBANCE TEST RESULTS

Environmental Conditions	24.0℃, 54% RH
Model	SCH-300-24
Operating mode	Mode 4 (worst case)
Test voltage	AC 230V,50Hz
Test engineer	Peng Dong
Pol	Line

No. Mł	. Freq.	Read Leve	~	Measure- ment	Limit	Over			
	MHz		dB	dBuV	dBuV	dB	Detector	Comment	
1 *	0.17	23 46.6	2 9.62	56.24	64.85	-8.61	QP		-
2	0.17	23 35.9	8 9.62	45.60	54.85	-9.25	AVG		
3	0.25	80 40.6	3 9.62	50.25	61.50	-11.25	QP		-
4	0.25	80 28.8	1 9.62	38.43	51.50	-13.07	AVG		_
5	0.35	70 38.4	7 9.65	48.12	58.80	-10.68	QP		-
6	0.35	70 25.6	2 9.65	35.27	48.80	-13.53	AVG		_
				Constant of the second					

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

A.2. RADIATED DISTURBANCE TEST RESULTS (9kHz - 30MHz)

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

.

Pol	Z	
Test engineer	Peng Dong	
Test voltage	AC 230V,50Hz	
Operating mode	Mode 4 (worst case)	
Model	SCH-300-24	
Environmental Conditions	24.0℃, 54% RH	

				Limit	Over		
MHz	dBuV	dB	dBuA	dBuA	dB	Detector	Comment
3.2775	-29.17	25.02	-4.15	22.00	-26.15	QP	
0.8149	-28.68	26.12	-2.56	22.00	-24.56	QP	
4.4690	-26.26	25.75	-0.51	22.00	-22.51	QP	
4	.4690	.4690 -26.26	.4690 -26.26 25.75			1000 00 00	

A.3. RADIATED DISTURBANCE TEST RESULTS (30MHz - 1GHz)

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

A.4. HARMONIC CURRENT TEST RESULTS

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

1102

Operating mode			SCH-30	00-24						
and the second sec	Operating mode			Mode 4						
Test voltage			AC 230	V,50Hz			_			
Test engineer	Peng D	Peng Dong								
Test engineer Test Result THC(mA): 7 Parameter		THD(%): 5.5 est: 229.9 1326.7	Peng D lification(Power PO Frequen Crest F P Harms(avg) (mA) 1.000 38.000 0.500 8.500 0.500 8.500 0.500 8.500 0.200 12.800 0.300 12.800 0.300 12.800 0.400 14.800 0.300 12.200 0.300 11.200 0.300 11.200 0.300 11.200 0.300 11.200 0.300 11.200 0.200 10.800 0.200 0.200 0.200 0.200 8.600		0 POHC 0.985 Harms(max) (mA) 1.300 38.500 1.000 39.600 0.600 26.000 0.600 8.500 0.300 8.400 0.500 12.800 0.300 14.900 0.300 14.900 0.300 11.400 0.300 11.400 0.300 11.400 0.300 11.400 0.300 12.400 0.300 12.400 0.200 9.300 0.200 8.700 0.200 8.700	Limit(mA):125 150%Limit 3.272 7.179 19.937 18.700 8.559 14.097 21.480 25.005 20.641 19.131 19.635 20.809 18.124 15.607 14.600 14.600	Status Pass N/A Pass			
31	0.100 8.500	-	0.200 8.600	-	0.200 8.700		N/A			
32 33 34 35 36	0.100 7.500 0.100 6.200 0.100	39.726 39.726	0.200 7.600 0.200 6.300	19.131 15.859	0.200 7.600 0.200 6.300	12.754	N/A Pass N/A Pass			
37	5.500 0.100 5.300 0.100	39.726 39.726	0.200 5.600 0.100 5.400 0.100	14.097 13.593 are ignored.	0.200 5.700 0.100 5.300 0.100	9.566 8.894	N/A Pass N/A Pass N/A			

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

Model			SCH-30	0-24					
Operating m	iode		Mode 4 AC 230V,50Hz Peng Dong						
Fest voltage									
Fest engine	ər								
Measu	e qualification(Power C arements are compliant Supply Voltage Supply Frequency Crest Phase Crest Factor Fundamental Voltage	ff Load): Pa with IEC/EN Nominal 230 50 90.0 1.414 229.75	ss 161000-3-2 Ec Measured Low 229.73 50.0 89.6 1.414	. 4 & IEC/EN Measured High 229.88 50.0 89.8 1.415	61000-4-7 Ed. Deviation -0.27 0.0 -0.4 0.001	2.1 Allowed Deviation 4.6 0.25 3.0 -0.014//0.006	Result Pass Pass Pass Pass		
	Harmonics Voltage	Harmonic		- mit Re	- sult		•		
2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 7 8 9 10 11 21 3 14 5 6 7 8 9 10 11 21 3 14 5 16 7 8 9 10 11 21 3 14 5 6 7 8 9 10 11 21 3 4 5 6 7 8 9 10 11 21 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 11 2 2 3 4 5 6 7 8 9 0 31 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.090 0.130 0.030 0.020 0.020 0.010 0.010 0.020 0.020 0.020 0.020 0.020 0.010 0.010 0.010 0.000 0.000 0.010 0.000 0.010 0.000 0.010 0.000 0.000 0.010 0.000 0.010 0.000 0.000 0.010 0.000	0.048 0.073 0.029 0.030 0.016 0.018 0.008 0.003 0.008 0.003 0.008 0.003 0.004 0.003 0.004 0.001 0.005 0.000 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000	0.20 0.30 0.20 0.30 0.20 0.10 0.10 0.10 0.10 0.10 0.10 0.1	0 Pas 0 <t< td=""><td>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</td><td></td><td></td></t<>	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

A.5. IMMUNITY TEST RESULTS

Standard	🖾 EN 61547	:2009	🛛 EN 61000-4-2				
EUT	LED Power Su	lply	Temperature	23.2℃			
M/N	SCH-300-24		Humidity	50%			
Test Mode	MODE 4		Pressure	1008mbar			
Input voltage	AC 230V,50Hz	2	Test Results	Pass			
Test engineer	Peng Dong						
Discharge Mode	Test Points	Test Valtage (kV) & polarity	Number of discharges/polarity	Discharge interval (s)	Performance Criteria		
Contact Discharge	Conductive surfaces	± 2&4	10	1	В		
Air Discharge	Insulating surfaces	± 2&4&8	10	1	В		
VCP	-	± 4	10	1	В		
HCP	-	± 4	10	1	В		

Note :

RADIO-FR	EQUENCY ELECTRO	OMAGNETIC FIEL	D IMMUNITY TI	EST RESULTS	
Standard	EN 61547:2009		I EN 61000-4-3		
EUT	LED Power Supply		Temperature	24.1°C	
M/N	SCH-300-24		Humidity	55%	
Test Mode	MODE 4		Pressure	1008mbar	
Input voltage	AC 230V,50Hz		Test engineer	Baron wen	
Modulation	1 kHz, 80 % AM		Test Results	Pass	
Steps	1%				
Angle of EUT	Antenna polarization	Frequency Range	Test Level	Performance Criteria	
0°	Vertical Horizontal	80 - 1000 MHz	3 V/m A		
90°	Vertical Horizontal	80 - 1000 MHz	3 V/m A		
180°	Vertical Horizontal	80 - 1000 MHz	00 MHz 3 V/m		
270°	Vertical Horizontal	80 - 1000 MHz	3 V/m	A	

Note :

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

101-201,No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com. Scan code to check authenticity.

Standard	🖾 EN 61547:2009		🖾 EN 61000-4-4		
EUT	LED Power Supply		Temperature	23.9°C	
M/N	SCH-300-24		Humidity	52%	
Test Mode	MODE 4		Pressure	1008mbar	
Input voltage	AC 230V,50Hz		Test Results	Pass	
Test engineer	Peng Dong				
Port under test	Test Level & polarity	Repetition Frequency	Test duration / polarity	Performance Criteria	
AC Input / Output Power	±1 kV	5 kHz	2min	В	
DC Input / Output Power			C		
Signal / Control Port					

Note:

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

101-201,No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com. Scan code to check authenticity.

Standard	🖾 EN 61547:2009		🖾 EN 61000-4-6		
EUT	LED Power Supply		Temperature	24.1°C	
M/N	SCH-300-24		Humidity	54%	
Test Mode	MODE 4		Pressure	1008mbar	
Input voltage	AC 230V,50Hz		Test Results	Pass	
Frequency range	0,15 - 80 MHz		Test engineer	Peng Dong	
Port under test	Test Level	Coupling method	Dwell time	Performance Criteria	
AC Input / Output Power	3 V	CDN	3 seconds	A	
DC Input / Output Power					
Signal / Control Port					

105

		SURGE IMM	UNITY TEST	RESULTS			
Standard	EN 61547:2009			EN 61000-4-5			
EUT	LED Power Supply			Temperature	23.9°C		
M/N	SCH-300-2	SCH-300-24			52%		
Test Mode	MODE 4	MODE 4			1008mbar		
Input voltage	AC 230V,5	AC 230V,50Hz			Pass		
Test engineer	Peng Dong	Peng Dong					
Port under test	Coupling	Test Level & polarity(kV)	Phase angle (°)	Number of surges	Repetition rate(s)	Performance criteria	
AC Input power	L - N	+ 1	90	5	60	С	
		- 1	270	5	60	С	
AC Input power	L - PE	+ 2	90	5	60	С	
		- 2	270	5	60	С	
AC Input power	N - PE	+ 2	90	5	60	С	
		- 2	270	5	60	С	
AC Input power	L&N - PE	+ 2	90	5	60	С	
		- 2	270	5	60	С	

Note:

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

101-201,No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com. Scan code to check authenticity.

VOLTA	GE DIPS AND SI	HORT INTE	ERRUPTI	ONS IMMUNITY 1	EST RESULTS	
Standard	EN 61547:2009			区 EN 61000-4-11		
EUT	LED Power Supply			Temperature	23.9°C	
M/N	SCH-300-24			Humidity	52%	
Test Mode	MODE 1			Pressure	1008mbar	
Input voltage	AC 277V,50Hz, AC120V,60Hz			Test Results	Pass	
Test engineer	Peng Dong					
UNOM (Vac)	Test Level Number of peri		of periods	Phase angle		
	(% UNOM)	50Hz	60Hz	(°)	Performance criteria	
230	70	10	12	0, 90, 180, 270	С	
230	0	0,5	0,5	0	В	

Note:

Shenzhen Southern LCS Compliance Testing Laboratory Ltd.

ANNEX B - TEST PHOTOS

B.1. Conducted Disturbance at electric power supply

122

ANNEX C - EXTERNAL AND INTERNAL PHOTOS OF THE EUT

The photographs show the equipment under test.

Figure. 1

Shenzhen Southern LCS Compliance Testing Laboratory Ltd. 101-201, No. 39 Building, Xialang Industrial Zone, Heshuikou Community, Matian Street, Guangming District, Shenzhen, China. Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com.

Scan code to check authenticity.

Figure. 3

Figure. 4

Figure. 5

----- END ------

